LECTURE I

Hamiltonian and inverse-Hamiltonian dynamical systems

Maciej Błaszak

Poznań University, Poland

 \leftarrow

Hamiltonian and inverse-Hamiltonian vector fields

- \bullet *M* $-$ manifold.
- $C(M)$ the space of all smooth real-valued functions on M,
- duality map: $T^*M \times TM \to \mathbb{R}$, $\langle \gamma, v \rangle(x) = v(\gamma)(x)$, $v \in TM$, *γ* ∈ T [∗]M,
- **o** tensor fields of second order:

$$
\left(\Pi^{ij}\right)=\Pi,\hspace{0.5cm}\Pi(\gamma_1,\gamma_2)\in\mathbb{R},\hspace{0.5cm}\Pi\gamma\in\mathcal{TM},
$$

$$
(\Omega_{ij})=\Omega,\qquad \Omega(\nu_1,\nu_2)\in\mathbb{R},\quad \Omega\nu\in\mathcal{T}^*\mathcal{M},
$$

 \bullet

 \bullet

 \bullet

$$
(\Phi^i_j)=\Phi,\qquad \Phi(v,\gamma)\in\mathbb{R},\quad \Phi v\in\mathcal TM,\ \Phi\gamma\in\mathcal T^*M.
$$

Definition

Poisson tensor Π of co-rank r on M of dim $M = m$, is a bivector, which in local coordinates $(x_1, ..., x_m)$ takes the form

$$
\Pi = \sum_{i < j}^{m} \Pi^{ij} \partial_i \wedge \partial_j, \qquad \partial_k \equiv \frac{\partial}{\partial x_k}, \qquad (1.1)
$$

where

$$
\sum_{r} \left(\Pi^{jr} \partial_r \Pi^{jk} + \Pi^{ir} \partial_r \Pi^{kj} + \Pi^{kr} \partial_r \Pi^{ji} \right) = 0.
$$

• The kernel of Π is spanned by r exact one-forms

$$
\ker \Pi = Sp\{dc(x)\}_{i=1,\dots,r}.\tag{1.2}
$$

A function $f \in C(M)$ is called a Casimir function of Π if $df \in \text{ker } \Pi$.

Definition

A vector field X_H , related to function $H \in C(M)$ by

$$
X_H = \Pi dH \tag{1.3}
$$

is called the Hamiltonian vector field with respect to Π . H is called a Hamiltonian function.

Definition

A presymplectic tensor Ω of co-rank r on M is a two-form that is closed, i.e. $d\Omega = 0$. In a local coordinate system on M

$$
\Omega = \sum_{i < j}^{m} \Omega_{ij} \, dx_i \wedge dx_j, \qquad (1.4)
$$

 \leftarrow

where the closeness condition is

$$
\partial_i \Omega_{jk} + \partial_k \Omega_{ij} + \partial_j \Omega_{ki} = 0.
$$

• The kernel of Ω is an integrable distribution

$$
\ker \Omega = Sp\{Z_i\}_{i=1,...,r}, \qquad [Z_i, Z_j] = 0.
$$

Definition

A vector field X^H , related to function $H\in\mathcal{C}(M)$ by

$$
\Omega X^H = dH,\tag{1.5}
$$

is called the inverse-Hamiltonian vector field with respect to Ω .

- If co-rank $r = 0$, then $m = 2n$.
- Non-degenerated closed two-form *ω*: symplectic form.
- Non-degenerated Poisson bivector *π*: implectic bivector.
- In that case

 \bullet

 \bullet

$$
\omega^{-1} = \pi \implies X_H = X^H.
$$

• Implectic tensor π induces a Lie algebra on the space $C(M)$:

$$
\{\ldots\}_{\pi}: C(M) \times C(M) \to C(M).
$$

$$
\{F, G\}_{\pi}(x) := \langle dF, \pi dG \rangle (x) = \pi(x) (dF, dG).
$$
 (1.6)

• In fact, there holds

$$
\{F, G\}_{\pi} = -\{G, F\}_{\pi}
$$
antisymmetry

 \bullet

 \bullet

 \bullet

 ${F, GH}_\pi = {F, G}_\pi H + {G}_F F, H_\pi$ Leibniz rule

 ${F, {G, H}_\pi}$, ${F, {G, H}_\pi}$, ${F, {G, H}_\pi}$

This particular Lie algebra is called a Poisson algebra.

K 등 ▶ K 등 ▶ ..

Non-degenerate case. Symplectic manifold

• The Poisson bracket [\(1.6\)](#page-5-0) can be defined by symplectic form $\omega = \pi^{-1}$, as:

$$
\{F, G\}^{\omega} := \omega(X_F, X_G) = \langle \omega X_F, X_G \rangle = \langle \omega X^F, X_G \rangle = \langle dF, \pi dG \rangle
$$

= $\pi(dF, dG) = \{F, G\}_{\Pi}$ (1.7)

According to Darboux theorem, there always exist local coordinates $(x_1, ..., x_{2n})$ (global on $M = \mathbb{R}^{2n}$), such that

$$
\pi = \sum_{i=1}^{n} \partial_{x_i} \wedge \partial_{x_{n+i}}, \quad (\pi^{ij}) = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix},
$$

$$
\omega = \sum_{i=1}^{n} dx_{n+i} \wedge dx_i, \quad (\omega_{ij}) = \begin{bmatrix} 0 & -I_n \\ I_n & 0 \end{bmatrix}.
$$

 $\omega \pi = \pi \omega = I_{2n}$ $\omega \pi = \pi \omega = I_{2n}$ $\omega \pi = \pi \omega = I_{2n}$, $(x_1, ..., x_{2n})$ $(x_1, ..., x_{2n})$ $(x_1, ..., x_{2n})$ – canonica[l c](#page-6-0)[oor](#page-8-0)[d](#page-6-0)[in](#page-7-0)a[tes](#page-0-0).

 \bullet

 \bullet

$$
u_t = X_H(u) = \pi dH(u) = \pi \omega X^H(u) = X^H(u). \tag{1.8}
$$

• Let Q be a position manifold (configuration space) of dim $Q = n$. Then, a Poisson manifold is $M = T^*Q$ of dim $M = 2n$, with local ${\sf chart}\; ({\sf global}\; {\sf for}\; Q={\mathbb R}^n) \; (q,p)-{\sf canonical}\; {\sf position}\; {\sf and}\; {\sf momenta}$ coordinates. M is called a phase space.

Hamiltonian flows on pseudo-Riemann space

- Let (Q, g) be a pseudo-Riemann space with covariant metric tensor g and local coordinates $(q^{1},...,q^{n}).$ Let $\emph{G} = \emph{g}^{-1}$ be a contravariant metric tensor.
- The Levi-Civita connection components are defined by

$$
\Gamma^i_{jk} = \frac{1}{2} \sum_{r=1}^n G^{ir} (\partial_k g_{rj} + \partial_j g_{kr} - \partial_r g_{jk}), \qquad \partial_k \equiv \frac{\partial}{\partial q^k}.
$$

• The equations

$$
q_{tt}^i + \Gamma_{jk}^i q_t^j q_t^k = G^{ik} \partial_k V(q), \qquad i = 1, ..., n \qquad (1.9)
$$

describe the motion of a particle in the pseudo-Riemann space Q with the metric g, under potential $V(q)$.

- Obviously, for $G = I(1.9)$ $G = I(1.9)$ reduces to Newton equations of motion.
- Eqs. [\(1.9\)](#page-9-0) are equivalent to Lagrangian equations

$$
\delta L = 0, \qquad L = \frac{1}{2} \sum_{i,j} g_{ij} q_t^i q_t^j - V(q).
$$

We can pass to the standard Hamiltonian description on $M = T^{\ast} Q$, where

$$
h(q, p) = \sum_{i=1}^{n} q_t^i \frac{\partial L}{\partial q_t^i} - L = \frac{1}{2} \sum_{i,j} G^{ij} p_i p_j + V(q),
$$

$$
p_i = \frac{\partial L}{\partial q_t^i} = \sum_j g_{ij} q_t^j.
$$

• The equations of motion on M are

$$
\left[\begin{array}{c} q \\ p \end{array}\right]_t = \pi dh = \left[\begin{array}{cc} 0 & I_n \\ -I_n & 0 \end{array}\right] \left[\begin{array}{c} \frac{\partial h}{\partial q} \\ \frac{\partial h}{\partial p} \end{array}\right] = X_h. \tag{1.10}
$$

• For $V(q) = 0$ we have geodesic motion.

On $M = T^*Q \ni (q_1, q_2, p_1, p_2)$ consider Hamiltonian function

$$
h = \frac{1}{2}p_1^2 + \frac{1}{2}p_2^2 + q_1^3 + \frac{1}{2}q_1q_2^2
$$

• and related Hamiltonian dynamics

$$
q_{1t} = p_1
$$

\n
$$
q_{2t} = p_2
$$

\n
$$
p_{1t} = -3q_1^2 - \frac{1}{2}q_2^2
$$

\n
$$
p_{2t} = -q_1q_2.
$$

4 0 8

ミメスミメ

o Consider

$$
u_t = X_h(u) = \pi dh(u), \qquad u = (q, p)^T.
$$
 (1.11)

• Function $f(u)$ is called constant of motion of (1.11) if

$$
\{f(u),h(u)\}_\pi=0.
$$

- Let M be a symplectic manifold of dim $M = 2n$, with dynamical system given by $h(u)$.
- Assume that the system has *n* constant of motion $f_1, ..., f_n$ in involution

$$
\{f_i,f_j\}_{\pi}=0
$$

for all i,j and differentials df_i are independent at each T^*_uM .

化重复 化重变

Fix a point $a \in \mathbb{R}^n$ and consider a map

$$
F: M \to \mathbb{R}^n, \quad F=(f_1,...,f_n).
$$

- It is regular map by the assumption abaut df_i , so $M_a := F^{-1}(a)$ is a smooth *n*-dimentional submanifold for each $a \in \mathbb{R}^n$.
- Moreover it is a Lagrangian submanifold as :

$$
\omega(X_{f_i},X_{f_j})=(f_i,f_j\}_{\pi}=0
$$

and $X_f \subset T_u M_a$.

Theorem

(Liouville-Arnold)

- \bullet If M_a is compact and connected, then it is diffeomorphic to $\mathcal{T}^n=0$ **R**n/**Z**ⁿ , the n−dimensional torus.
- **2** In the vicinity of M_a there are cannonical coordinates $(I_1, ..., I_n, I_n)$ $\varphi_1, ..., \varphi_n$) $(0 \leq \varphi_i \leq 2\pi)$, action-angle coordinates, in which [\(1.11\)](#page-12-0) reads

$$
I_{it} = 0, \quad \varphi_{it} = \varsigma_i (I_1, ..., I_n) = \frac{\partial h(I_1, ..., I_n)}{\partial I_i}.
$$

It is quasi periodic motion on T^n . For the realization of periodic motion, additionally:

$$
\sum_{i=1}^n n_i \varsigma_i = 0, \qquad n_i \in \mathbb{Z}.
$$

• In principle, the system is integrable in quadratures. In practice, we can do it in very particular cases, only. For example, if we can find a coordinates in which h separates onto n on[e-d](#page-13-0)[im](#page-15-0)[e](#page-13-0)[n](#page-14-0)[s](#page-15-0)[i](#page-16-0)[on](#page-0-0)[al](#page-0-1) [sys](#page-0-0)[te](#page-0-1)[m](#page-0-0)[s.](#page-0-1) 2990

Canonical transformations

• Consider:
$$
(q, p) \rightarrow (Q, P)
$$

\n
$$
\pi = \sum_{i} \partial_{q_i} \wedge \partial_{p_i}, \qquad \omega = \pi^{-1} = \sum_{i} dp_i \wedge dq_i
$$
\n
$$
\Downarrow
$$
\n
$$
\pi' = \sum_{i} \partial_{Q_i} \wedge \partial_{P_i}, \qquad \omega' = \pi'^{-1} = \sum_{i} dP_i \wedge dQ_i.
$$

- Consider smooth function $F(q, P)$, called generating function of canonical transformation, such that $\Big\vert$ ^{∂2}F *∂*q*∂*P $\Big|\neq 0.$
- **o** Define

$$
p_i = \frac{\partial F}{\partial q_i} \equiv F_{q_i}, \quad Q_i = \frac{\partial F}{\partial P_i} \equiv F_{P_i}.
$$

• Then,

$$
dp = F_{qq}dq + F_{Pq}dP
$$

\n
$$
dQ = F_{Pq}dq + F_{PP}dP
$$

\n
$$
dp = F_{qq}F_{Pq}^{-1}dQ + F_{qp}F_{Pq}^{-1}F_{PP}dP
$$

\n
$$
dp = F_{qq}F_{Pq}^{-1}dQ + F_{qp}F_{Pq}^{-1}F_{PP}
$$

o so we have

$$
\sum_i dp_i \wedge dq_i = \sum_i dP_i \wedge dQ_i.
$$

• In a similar fasion one finds:

$$
F(q, Q) \implies p = F_q, P = -F_Q,
$$

$$
F(p, P) \implies q = -F_p, Q = -F_P,
$$

$$
F(Q, p) \implies q = F_p, P = F_Q.
$$

4 0 3 4

活

경어 지금에